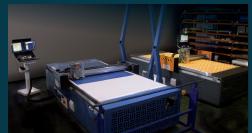

Epidor


IH

Seals <mark>and</mark> Rubb<mark>er Tec</mark>hnology 1

FLAT GASKETS High performance products. Cut to size.

Epidor Seals and Rubber Technology

CUSTOMISED SEALING From design to application

We offer reliable solutions according to the **C**lient's needs, thanks to

- Collaboration with leading manufacturers
- ✓ 2 production plants
- Wide stock of raw materials
- Technical support
- Presence in the sector for more than 50 years

PRODUCTS AND SERVICES

- Gaskets for metal flanges according to DIN EN, BS, ASME / ANSI, JIS, GOST cut with or without holes, according to drawing.
- Low-torque flange gaskets (glass, plastic,frosted, fiberglass reinforced polyester etc...) cut with or without holes.
- **Gylon®** gaskets, manufactured from sectors joined by a welding process patented by **Garlock.** Large diameter seals.
- **Reverse Engineering:** drawing up from samples. Reconstruction of seals and their cutting.
- Cutting seals to size for pumps, reductors, valves, agitators and other equipment.

MARKETS OF APPLICATION

Chemical industry

- Petrochemicals
- Steel industry
- Pharmaceutical industry

- Automotive
- Water treatment and distribution networks

CERTIFICATIONS

We can provide most of the certifications requested by the industry from our large stock of raw materials:

BAM: Certified for

high pressure Oxygen

applications.

SVGW: Swiss certification for gas pipelines.

KTW · WRAS · W270: Certifications for use with drinking water

DVGW

HTB: Seal certifications for

high temperatures in gas.

HTR

BS 6755-2 Firesafe: Fire resistance, in

accordance with BS 6755 part 2 and API 607.

(ह प्रा

Reglamento CE

nº 1935/2004:

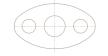
Compliance with

requirements for contact with food products.

Germanischer Lloyd.

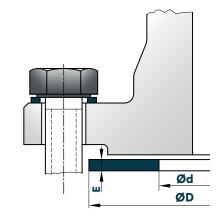
FDA. Compliance with requirements for contact with food products.

VABS


BS 7531: Specifications of fiber materials and rubber formulations for industry.

Compliance with requirements for contact with food and pharmaceutical products.

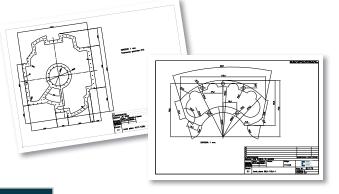
DESIGN AND PRODUCTION


Epidor SRT has the resources to design and cut the flat gasket that best suits the customer's process. The range of materials available for cutting seals is:

- ✓ Compressed fibers
- ✓ PTFE's (Virgin, expanded, restructured)
- \checkmark Graphite
- $\checkmark\,$ High Temperature Fibers
- ✓ Elastomers

STANDARD FLANGE GASKETS

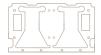
Flat gasket dimensions without holes and according to DIN 2690 / DIN EN 1514-1, for flanges with raised faces (type RF)


	a							Ø	D					
DN	ø	d	PN	2,5	PN	6	PN	10	PN	16	PN	25	PN	40
	DIN 2690	DIN 1514	DIN 2690	DIN 1514	DIN 2690	DIN 1514	DIN 2690	DIN 1514	DIN 2690	DIN 1514	DIN 2690	DIN 1514	DIN 2690	DIN 1514
4	6	-	-	-	-	-	-	-	-	-	30	-	-	-
6	10	-	28	-	28	-	38	-	38	-	38	-	38	-
8	14	-	33	-	- 33	-	43	-	43	-	43	-	43	-
10	18	18	38	39	38	39	45	46	45	46	45	46	45	46
15	22	22	43	44	43	44	50	51	50	51	50	51	50	51
20	28	27	53	54	53	54	60	61	60	61	60	61	60	61
25	35	34	63	64	63	64	70	71	70	71	70	71	70	71
32	43	43	75	76	75	76	82	82	82	82	82	82	82	82
40	49	49	85	86	85	86	92	92	92	92	92	92	92	92
50	61	61	95	96	95	96	107	107	107	107	107	107	107	107
60		72	-	106	-	106	-	117	-	117	-	117	-	117
65	77	77	115	116	115	116	127	127	127	127	127	127	127	127
80	90	89	132	132	132	132	142	142	142	142	142	142	142	142
100 125	115	115	152 182	152 182	152 182	152 182	162 192	162 192	162 192	162 192	168 195	168 194	168 195	168 194
125	141 169	141 169	207	207	207	207	218	218	218	218	225	224	225	224
175	109	109	237	207	237	207	218	210	248	210	255	224	267	224
200	220	220	262	262	262	262	273	273	273	273	285	284	207	290
250	274	273	318	317	318	317	328	328	330	329	342	340	353	352
300	325	324	373	373	373	373	378	378	385	384	402	400	418	417
350	368	356	423	423	423	423	438	438	445	444	458	457	475	474
400	420	407	473	473	473	473	490	489	497	495	515	514	547	546
450	470	458	528	528	528	528	540	539	557	555	565	564	572	571
500	520	508	578	578	578	578	595	594	618	617	625	624	628	628
600	620	610	680	679	680	679	695	695	735	734	730	731	745	747
700	720	712	785	784	785	784	810	810	805	804	830	833	850	-
800	820	813	890	890	890	890	915	917	910	911	940	942	970	-
900	920	915	990	990	990	990	1015	1017	1010	1011	1040	1042	1080	-
1000	1020	1016	1090	1090	1090	1090	1120	1124	1125	1128	1150	1154	1190	-
1100	-	1120	-	-	-	-	-	1231	-	1228	-	1254	-	-
1200	1220	1220	1290	1290	1305	1307	1340	1341	1340	1342	1360	1364	1395	-
1400	1420	1420	1490	1490	1520	1524	1545	1548	1540	1542	1575	1578	1615	-
1500	-	1520	-	-	-	-	-	1658	-	1654	-	1688	-	-
1600	1620	1620	1700	1700	1720	1724	1770	1772	1760	1764	1795	1798	1830	-
1800	1820	1820	1900	1900	1930	1931	1970	1972	1960	1964	2000	2000	-	-
2000	2020	2020	2100	2100	2135	2138	2180	2182	2165	2168	2230	2230	-	-
2200	2220	2220	2305	2307	2345	2348	2380	2384	2375	-	-	-	-	-
2400	2420	2420	2505	2507	2555	2558	2590	2592	2585	-	-	-	-	-
2600	2620	2620	2705	2707	2760	2762	2790	2794	2785	-	-	-	-	-
2800	2820	2820	2920	2924	2970	2972	3010	3014	-	-	-	-	-	-
3000 3200	3020 3220	3020 3220	$3120 \\ 3320$	3124 3324	3170 3380	3172 3382	3225	3228	-	-	-	-	-	-
3200 3400	3220	3220 3420	3320 3520	3324 3524	3380	3382 3592	-	_	-	_	-	-	-	-
3400	3420	3420 3620	3520 3730	3524	3800	3592 3804	-	_	_	_	⁻		-	-
3800	3620	3620 3820	3730 3930	3734	3800	3004	_	_	_	_			_	
	4020			4131								1 [
1000	11020	1020	1100	1 1101		-		· -			· -			-

Flat gasket dimensions without holes and according to ASME B16.21, for ASME / ANSI B16.5 flanges with raised faces (type RF)

				Ø	D		
DN	Ød	150 (PN20)	300 (PN50)	400 (PN68)	600 (PN100)	900 (PN150)	1500 (PN250)
1/2"	21	48	54	54	54	64	64
3/4"	27	57	67	67	67	70	70
1"	33	67	73	73	73	79	79
$1^{1/4"}$	42	76	82	82	82	88	88
$1^{1/2"}$	48	86	95	95	95	98	98
$2^{1/2"}$	73	124	130	130	130	165	165
$3^{1/2"}$	102	161	165	161	161		
2"	60	105	111	111	111	142	142
3"	89	136	149	149	149	168	174
4"	114	174	181	178	194	206	209
5"	141	196	210	213	241	247	254
6"	168	222	250	247	266	288	282
8"	219	279	308	305	320	358	352
10"	273	340	362	359	400	434	434
12"	324	410	422	419	457	498	520
14"	356	451	486	483	492	520	577
16"	406	514	540	537	565	574	641
18"	457	549	597	594	613	638	704
20"	508	606	654	648	682	698	755
24"	610	717	774	768	790	840	900

For other standards, see the interactive tool https://epidor-srt.com/documentacion-tecnica/catalogos-y-folletos/ All dimensions are in mm.



COMPRESSED FIBERS

The entire range of compressed fibers is asbestos-free.

Nan	ne	Material	Application	Temperature**	Thickness (mm)	Certifications
						CCC Frenzelit creating hightech solutions
e in Germany Frenzeliii Iovapress 260	Novapress [®] 260	Aramid Fibers + NBR	Heating and sanitary systems. Compatible with hydraulic fluids, motor oils, coolants and fuels.	-40 °C +150 °C	0,3 * 2,0 0,5 * 3,0 * 0,75 * 4,0 * 1,0 * 1,5 *	BS 7531 Grade Y DIN 3535-6 KTW W270 WRAS
Frenzelli Frenzelli novapres 350	Novapress [®] 850 Novaform [®] 2300	Aramid Fibers + NBR in a high proportion	Gearboxes, gearbox covers, pump covers, etc. Extremely adaptable and traceable formulation suitable for Industry 4.0.	-40 °C +130 °C	0,3 * 2,0 0,5 * 3,0 * 0,75 * 4,0 * 1,0 * 1,5 *	TA-Luft VP 401 DIN 3535-6 DNV-GL VDI 2200 FDA EC 1935/2004 KTW WRAS W270
Frenzelin novaprese Frenzelin press BASIC	Novapress [®] BASIC	Aramid Fibers + NBR	Sanitary services, gas, water, air and saturated steam supply networks up to 150 °C etc Food industry.	-100 °C +250 °C	$\begin{array}{ccc} 0,3 & 2,0 \\ 0,5 & 3,0 \\ 0,75 & 4,0 \\ 1,0 \\ 1,5 \end{array}$	BS 7531 Grade Y DIN 30653 TA-Luft DIN 3535-6 DNV-GL SVGW EC 1935/2004 VP 401 KTW WRAS W270
Franzelin (Construction (Construct	Novapress® UNIVERSAL	Aramid Fibers + NBR	Sanitary services, gas, water, air and saturated steam supply networks up to 200 °C etc	-100 °C +250 °C	0,3 2,0 0,5 3,0 0,75 4,0 * 1,0 1,5	BS 7531 Grade X TA-Luft (VDI 2200) DIN 3535-6 DNV-GL SVGW EC 1935/2004 BAM KTW WRAS W270
Frenzelin novapress Frenzelin	Novapress [®] MULTI II	Aramid Fibers + graphite + NBR	Excellent resistance to thermal oils, petroleum products, gases and saturated steam up to 270° C etc	-100 °C +350 °C	0,3 * 2,0 0,5 * 3,0 0,75 * 4,0 * 1,0 1,5 *	BS 7531 Grade X TA-Luft DIN 3535-6 D NV-GL BAM
	Novapress [®] ACTIV	Fibre of Aramid+ NBR	Excellent resistance to oils, fuels and fats. Excellent adaptation when bolt tightening pressure is uneven.	-100 °C +200 °C	1,0 1,5 * 2,0 3,0 4,0 *	-
e in Germany in	Novapress [®] AMBITION	Fiberglass + NBR	Formulation for general use in industrial equipment (pumps, valves, compressors, motors etc).	-100 °C +200 °C	$\begin{array}{cccc} 0,5 & 3,0 \\ 0,75* & 4,0* \\ 1,0 & 5,0* \\ 1,5 \\ 2,0 \end{array}$	BS 7531 Grade X TA-Luft DIN 3535-6 EC 1935/2004 BAM KTW WRAS
Frenzelli novoprese Frenzelli el EXIBLE/816	Novapress® FLEXIBLE/815	Aramid Fibres + NBR in a high proportion	High resistance to oils and good adaptation to metal surfaces Suitable for gas and water piping	-100 °C +200 °C	$\begin{array}{cccc} 0,3 & 2,0 \\ 0,5 & 3,0 \\ 0,75 & 4,0 \\ 1,0 \\ 1,5 \end{array}$	TA-Luft DIN 3535-6 SVGW GL EC 1935/2004
THE PREP	Novatec® PREMIUM XP	Kevlar Fibers + NBR + graphite	Universal use in fluid sealing. Excellent chemical and thermal resistance. Suitable for saturated steam at 250 °C.	-100 °C +300 °C	0,5 3,0 0,8 1,0 1,5 2,0	BS 7531 Grade X TA-Luft VP 401 DIN 3535-6 DNV-GL SVGW EC 1935/2004 BAM KTW WRAS W270

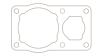
* * Temperature range for continuous service

... CONTINUE

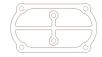
CONTINUE	e	Material	Application	Temperature**	Thickness (mm)	Certifications
						CCC Frenzelit creating hightech solutions
VITES PECH C	Novatec® SPECIAL	Kevlar Fibers + NBR + graphite	Excellent chemical resistance and thermal stability. High adaptation to surfaces. Suitable for steam, oils, water, weak acids and bases.	-100 ℃ +300 ℃	1,0 1,5 2,0 3,0	KTW
						Garlock an EnPro Industries family of companies
ATU-GAND Ballon ARD BULEGK BULEGK BULEGAR BULEGAR BULEGAR BULEGAR BULEGAR	Blue-Gard® 3000	Fibers of Aramid + NBR	Good behaviour in contact with water, oils, aliphatic hydrocarbons and fuels.	-73 ℃ +205 ℃	0,4 * 3,0 0,8 * 1,0 1,6 2,0	TA-Luft WRC BS 9920 BS 7531 Grade Y ABS API Fire-Safe RoHS 3
5500	IFG 5500	Fibers Inorganic + NBR	Inorganic fibers have excellent heat and oxidation resistance. Recommended material for saturated steam.	-73 ℃ +288 ℃	0,5* 3,0 0,8* 1,0 * 1,6 2,0	TA-Luft VP 401 ABS API Fire-Safe RoHS 3 Blow-out
00	Multi- Swell ™ 3760		Swelling material for water and oil applications, at low load.	-70 ℃ +205 ℃	0,4 * 0,8 * 2,4 * 3,2 *	ABS NSF 61 (material 3760 U) RoHS 3
					GLOS	TER- <i>PRESS</i> ®
acontra e acont acontra e acontra acontra acontra acontra e acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontra acontr	Gloster- Press®B	Aramid Fibers + NBR	Multipurpose material, for the sealing of oils, gases and petroleum products. Gas and drinking water supply piping.	-50 ℃ +250 ℃	0,5 1,0 1,5 2,0 3,0	EC 1935/2004 DIN 3535-6 TA -Luft (VDI 2440) W270 BAM
acrite a contra	Gloster- Press®G	Cellulose Fibers + NBR	For general use in water sealing in non-aggressive environments.	50 °C +140 °C	0,5 1,0 1,5 2,0 3,0	-
						PAPER - OIL
Sper Oll	Paper-Oil	Plasticized Cellulose Fibers	For general use in water, oil and gasoline sealing.	-40 °C +120 °C	0,2 1,0 0,3 1,5 0,4 2,0 0,5 0,8	-

* Thickness that is not usually in stock. Check availability.

* * Temperature range for continuous servic


PTFE's (virgin, expanded and restructured)

PTFE (polytetrafluoroethylene) has almost universal chemical resistance, is non-stick and is an excellent electrical insulator.


Virgin PTFE is rigid while expanded PTFE (ePTFE) is soft and copies its working surface perfectly. Restructured PTFE (rPTFE) solves the creep problem of virgin PTFE, thanks to its unique manufacturing process.

Nam	e	Material	Application	Temperature**	Thickness (mm)	Certifications
	PTFE Virgin	PTFE without additives or fillers	Almost universal chemical resistance. Suitable for the food and beverage, pharmaceutical and chemical industries in general.	-200 °C +260 °C	$\begin{array}{ccc} 0,5 & 3,0 \\ 1,0 & 4,0 \\ 1,5 \\ 2,0 \\ 2,5 \end{array}$	FDA USP Class VI EC 1935/2004 KTW W270 WRAS 3A Sanitary 20-27 Norsok M-710 RoHS 3 REACH ADI Free
	PTFE Expanded	ePTFE	Almost universal chemical resistance. It adapts very well to surfaces in poor condition. Suitable for chemically aggressive fluids.	-200 °C +260 °C	0,5 * 3,0 1,0 4,0 1,5 5,0 * 2,0 2,5 *	FDA BAM TA-Luft (VDI 2440)
					(CO Frenzelit creating hightech solutions
Ordina Ordina	Novafion® 100	rPTFE hollow glass ball loaded	Highly compressible material, suitable for low-torque flanges, e.g. glass, ceramic, plastic and FRP.	-200 °C +260 °C	1,0 1,5 * 2,0 3,0	FDA EC 1935/2004 GL TA-Luft (VDI 2200) Blow-out
- Organica 200 (Fr - Organica 200 - Organica - Orga	Novaflon [®] 200	rPTFE barium sulphate loaded	Material with the highest resistance to strong bases. Physiologically harmless and ideal for the food and pharmaceutical industry.	-200 °C +260 °C	1,0 1,5 * 2,0 3,0	FDA EC 1935/2004 GL DVGW TA-Luft (VDI 2200) Blow-out BAM
	Novaflon® 300	rPTFE with silica load	Very good balance between chemical resistance and creep. Material suitable for strong acids. Process chemical and petrochemical industry.	-200 °C +260 °C	1,0 1,5 * 2,0 3,0	FDA EC 1935/2004 GL DVGW TA-Luft (VDI 2200) Blow-out BAM
no 500 Fr. no 500	Novaflon® 500	ePTFE	Multi-directionally expanded virgin PTFE with high pressure resistance (< 100 bar) Resistant in the entire pH range (0 - 14).	-200 °C +260 °C	1,0 * 1,5 * 2,0 3,0 *	FDA EC 1935/2004 GL TA-Luft (VDI 2200) Blow-out BAM

NEXT...

... CONTINUE

Nam	е	Material	Application	Temperature**	Thickness (mm)	Certifications
						Garlock an EnPro Industries family of companies
3504 - 1/8° 3 200 - 1/8° 3 200 - 1/8° 3	GYLON® 3504	rPTFE aluminosilicates balls loaded	Material suitable for acids and of moderate concentration, hydrocarbon and refrigerants, among other fluids. PTFE Restructured.	-268 °C +260 °C	0,8 * 4,8 1,0 * 6,4* 1,6 2,0 3,2	FDA EC 1935/2004 USP Class VI ADI Free NSF61 KTW BAM ABS RoHS 3
STLON STA STLON STA MUSA	GYLON® 3510	rPTFE with barium sulphate loaded	Restructured PTFE that inhibits the polymerization of monomers ("pop-corning") Material with the broadest chemical resistance.	-268 °C +260 °C	0,8* 4,8* 1,0* 6,4* 1,6 2,0 3,2	FDA EC 1935/2004 ADI Free BAM ABS RoHS 3
	GYLON® 3501-E	rPTFE with silica loaded	Restructured PTFE that outperforms conventional PTFE by far. Chemical and petrochemical industries.	-268 °C +260 °C	$\begin{array}{cccc} 0,8 & 4,8 & * \\ 1,0 & 6,4 & * \\ 1,6 & 2,0 & \\ 3,2 & \end{array}$	FDA ADI Free RoHS 3 ABS BAM
SLEPPS SYL 1/8"OL 1 200 200 200 200 200	GYLON® 3545	Rigid PTFE core between two layers of microcellular PTFE	Excellent alternative to expanded PTFE in services that require consistent and reliable performance. Ideal for irregular surfaces.	-268 °C +260 °C	1,6 2,0 3,2 4,8 * 6,4 *	FDA USP Class VI ADI Free ABS RoHS 3
8	GYLON EPIX® 3504	rPTFE with aluminosilicate balls loaded	Restructured PTFE's with patented hexagonal surface relief. Single thickness. The relief reduces the contact area of the gasket and concen- trates the generated compressive	-268 °C +260 °C	2,4	FDA USP Class VI ADI Free TA-Luft Blow-out REACH RoHS 3 KTW
	GYLON EPIX® 3510	rPTFE with Barium sulphate loaded	force on the flange, thus creating a higher sealing pressure. Gylon EPIX® adapts to badly dama- ged flanges, supports flange vibrations better and provides improved compressibility and recovery.	-268 °C +260 °C	2,4	FDA USP Class VI ADI Free TA-Luft Blow-out REACH RoHS 3 KTW
	GYLON EPIX® 3501-E	rPTFE with silica loaded		-268 °C +260 °C	2,4	FDA USP Class VI ADI Free TA-Luft Blow-out REACH RoHS 3 KTW

* Thickness that is not usually in stock .Check availability.

* * Temperature range for continuous servic

GRAPHITES

High purity expanded graphite (> 99 %) for steam and thermal oil services, with temperatures up to 550 °C and pressures up to 250 bar. A stainless steel insert (1.4404/316L) is added to increase the mechanical stability of the gasket material and to facilitate hand-ling.

Title		Material	Application	Temperature**	Thickness (mm)	Certifications
					α	Frenzelit creating hightech solutions
au novephit 400 9 in Germany Franzellit ourbit 400	Novaphit [®] 400	Expanded Graphite	Ideal solution for very thin and narrow seals. Reinforced graphite with acid-proof stainless steel flat insert.	-200 °C +500 °C	0,5 * 3,0 0,75 ⁽¹⁾ 1,0 1,5 2,0	EC 1935/2004 ⁽¹⁾ TA-Luft
	Novaphit [®] SSTC ^{TA-L}	Expanded Graphite	Internal layer of acid-proof expanded metal (AISI 316L) Impregnation to reduce the leakage rate. XP coating optional.	-200 °C +550 °C	1,0 1,6 2,0 3,0	TA-Luft DIN 3535-6 DNV-GL Blow-out BAM Fire-Safe VP 401
Proventin MST Frenzenie Franzeli MST	Novaphit [®] MST	Expanded Graphite	Multi-layered material with up to 8 layers of graphite and 7 AISI 316L (expanded metal / flat) inserts. With XP coating.	-200 °C +550 °C	1,0 * 1,5 2,0 3,0 4,0 *	TA-Luft DIN 3535-6 DNV-GL Blow-out BAM Fire-Safe
Rovenhit v Rovenhit v Rovenhit v	Novaphit [®] VS	Expanded Graphite	Pre-compressed graphite without metal insert, for very agressive fluids.	-200 °C +550 °C	0,5 3,0 * 0,75 * 1,0 1,5 2,0	-
						Garlock an EnPro Industries family of companies
	Graph- Lock® 3125 SS	Expanded Graphite	High resistance to temperature, pressure and aggressive chemical fluids. AISI 316L stainless steel flat insert reinforcement.	-24 °C +454 °C	1,0 * 1,5 2,0 3,0	Fire-Safe ABS
	Graph- Lock® 3125 TC	Expanded Graphite	High resistance to temperature, pressure and aggressive chemical fluids. Reinforcement with a stainless steel mesh AISI 316L.	-240 °C +454 °C	1,0 * 1,5 2,0 * 3,0 *	Fire-Safe ABS

HIGH-TEMPERATURE MATERIALS

Titl	e	Material	Application	Temperature**	Thickness (mm)	Certifications
						CCC Frenzelit creating highted solutions
La maranta participada de la comparticipada de	Novaform® SK	Aramid Fibers + additives	Material with internal galvanized steel reinforcement (1.0314) in the form of a twill weave. Ideal for "hot" exhaust.	-100 ℃ +600 ℃	0,8 3,0 1,0 1,2 * 1,5 2,0	GL
Instance The Press, etter Inovabilica Universiter	NovaMICA® THERMEX	Phlogopite mica + silicone resin	Thermal and electrical insulation with expanded stainless steel insert, acid resistant (AISI 316L).	-200 °C +1.000 °C	1,0 5,0 * 1,5 2,0 3,0 4,0 *	-
international and internationa	lsoplan® 500 GREENLINE	Biosoluble Fibers + inorganic loads	Thermal insulation with minimum resistance loss between 300 °C and 500 °C. Low gas emission when heated for the first time.	-100 °C +1.050 °C	2,0 * 8,0 * 3,0 * 10,0 * 4,0 * 5,0 * 6,0 *	REACH SVCH
Frenzelli eoplen MARIO Frenzelli	lsoplan® VARIO	Ceramic Fibers + inorganic loads	Material for conveyor rollers in steel mills and for most furnace positions. Perfect insulation in the process industry.	-100 °C +1.250 °C	2,0 * 5,0 *	REACH SVCH
						Garlock an EnPro Industries family of companies
Conner Car	HTC 9850	Carbon Fibers + NBR	Material suitable for mineral oils, fuels, petroleum, saturated steam, aliphatic hydrocarbons and most refrigerants.	-75 ℃ +343 ℃	0,4* 3,2* 0,8* 1,0* 1,6* 2,0*	Fire-Safe RoHS 3

STYLE 9900	Graphite Fibers + NBR	Material suitable for saturated steam, oils, fats and water.	-75 ℃ +343 ℃	0,4* $3,2*0,8*1,0*1,6*2,0*$	TA-Luft VP 401 Blow-out Fire-Safe RoHS 3 API ABS
THERMa -PUR®	Inorganic Fibers	Sealing and Electric insulating material. Resistant to strong oxidants, fused salts and TiCl ₄ , among compounds.	100 °C +1.000 °C	1,6 * 2,0 * 3,2 *	RoHS 3 ABS

The elastomers or rubbers, are an interesting solution for services of up to 250 °C temperature.

For the correct selection of the most suitable elastomer, it is necessary to know the temperature of the application and to check the chemical compatibility of the elastomer with the process fluid.

Name	Composition	Application	Shore A hardness	Cá t T _{MÍN}	ontinuou emperat T _{AIR}	s workin ures (°C) T _{water}	g T _{OIL}		kness nm)	Format
NR 1506	Natural rubber	Good resistance to acids and bases, water and lyes. Electrical insulation. Resistant to abrasion and very good elasticity and deformation.	40±5	- 35	70	70	Х	1,0 * 1,5 2,0 3,0 4,0	5,0 6,0 8,0 * 10,0	1.500 x 10.000
CR 3012	Chloroprene Rubber (Neoprene)	Good Resistance to the ozone silicone oil and grease, ammonia, refrigerants, alcohols and self- extinguishing flame.	65 ± 5	-20	90	90	23	1,0 * 1,5 2,0 3,0 4,0	5,0 6,0 8,0 * 10,0	1.500 x 10.000
EPDM 4444	Ethylene propylene diene	Good resistance to ozone and Outdoor conditions, steam, water, acids, bases, ketones but incompatible with most oils and greases.	60±5	-40	120	100	Х	1,0 1,5 2,0 3,0 4,0	5,0 6,0 8,0 * 10,0 *	1.500 x 10.000
NBR 2001	Acrylonitrile butadiene	Good resistance ro mineral oils and greases, weak acids and bases. No Suitable for Outdoors use.	70 ± 5	-20	100	90	100	1,0 1,5 2,0 3,0 4,0	5,0 6,0 8,0 * 10,0 *	1.500 x 10.000
FKM / FPM	Fluoroelastomer Type A	Good resistance to acids hydrocarbons, mineral oils and greases etc Suitable for steam when peroxide-cured.	75 ± 5	-15	250	90	150	1,0 1,5 2,0 3,0 4,0	5,0 6,0 8,0 10,0	1.200 x 10.000
PU 90	Polyurethane	Excellent resistance to abrasion and to lubricants. Good resistance to ozone, acids and diluted bases. Hot water should be avoided.	90 ± 5C	-20	80	Х	80	1,0 1,5 2,0 3,0 4,0	5,0 * 6,0 * 8,0 * 10,0 * 12,0 *	1.000 x 2.000
NBR / Nylon	Fabric reinforced acrylonitrile butadiene	Material compatible with compressed air, liquefied petroleum gas, mineral oils, compressed natural gas Manufacturing of membranes.	70 ± 5	-20	90	90	90	0,2 * 0,3 * 0,4 * 5,0 * 0,5 * 0,65	0,8 * 1,0 * 1,5 * 2,0	1.400 x 1.500

Food grade and spongy ELASTOMERS

Name		Composition	Application	Shore A hardness	Co to T _{MÍN}	emperat T _{AIR}	s working ures (°C) T _{water}	T _{OIL}	Thickness (mm)	Format
	NBR FDA	Acrylonitrile butadiene	FDA EC 1935/2004 ADI Free	60 ± 5	-35	100	100	100	1,0 5,0 2,0 6,0 * 3,0 8,0 * 4,0 10,0	
	EPDM FDA	Ethylene propylene diene	FDA	60 ± 5	-25	100	100	Х	11,0 * 5,0 1,5 6,0 2,0 8,0 3,0 10,0 4,0	1.400 x 10.000
	FKM FDA	Fluoroelastomer Type A	FDA EC 1935/2004	64±5	-10	250	100	150	1,0 * 1,5 * 2,0 * 3,0	1.200 x 10.000
	VMQ FDA	Silicone Rubber	FDA EC 1935/2004 BfR WRAS	60±5	-60	230	90	Х	0,3 2,0 6,0 0,5 3,0 8,0 1,0 4,0 10,0 1,5 5,0 12,0	
	NBR T180 Spongy	Closed cell NBR foam	FMVSS 302 UL 94 HF-1	45±5Sh00	-10	90	90	90	2,0 7,0* 3,0 8,0* 4,0 9,0* 5,0 10,0 6,0	1.000 x 10.000
	EPDM T160 Spongy	Closed cell EPDM foam	FMVSS 302	35 ± 5 Sh 00	-40	100	100	Х	2,0 7,0* 3,0 8,0* 4,0 9,0* 5,0 10,0 6,0	
	EPDM T100 Spongy	Closed cell EPDM foam	FMVSS 302	$50\pm5\mathrm{Sh}00$	-30	70	70	Х	2,0 7,0* 3,0 8,0* 4,0 9,0* 5,0 10,0 6,0	
	VMQ W Spongy	Closed cell VMQ foam	WRAS FMVSS 302 FAR 25/JAR 25/CS Appendix F	-	-60	230	100	Х	1,5 * 6,0 2,0 * 8,0 3,0 10,0 4,0 12,0 5,0 *	
	CR Spongy with adhesive	Closed cell CR foam	FMVSS 302 UL 94 HF-1 REACH RoHS	50±5Sh00	-40	90	90	90	2,0 6,0 3,0 8,0 4,0 10,0 5,0	1.000 x 2.000
	EPDM Spongy with adhesive	Closed cell EPDM foam	FMVSS 302 REACH RoHS	-	-40	80	80	Х	1,5 6,0 * 2,0 8,0 3,0 10,0 4,0 12,0 5,0 15,0	1.000 x 2.000
	PE Spongy with adhesive	Closed cell PE foam	REACH RoHS	44±5 Sh00	-80	80	80	80	1,5 * 5,0 2,0 * 6,0 3,0 8,0 * 4,0 10,0	

* Thickness that is not usually in stock. Check availability.

Epidor Seals and Rubber Technology

P.I.Els Batzacs C/Els Xops, 5 08185 Lliçà de Vall (Barcelona) +34 938 63 32 77 infoweb@epidor-srt.com

www.epidor-srt.com

an **EPI INDUSTRIES** family of companies